Search results for "Mahalanobis distance"

showing 10 items of 19 documents

LogDet divergence-based metric learning with triplet constraints and its applications.

2014

How to select and weigh features has always been a difficult problem in many image processing and pattern recognition applications. A data-dependent distance measure can address this problem to a certain extent, and therefore an accurate and efficient metric learning becomes necessary. In this paper, we propose a LogDet divergence-based metric learning with triplet constraints (LDMLT) approach, which can learn Mahalanobis distance metric accurately and efficiently. First of all, we demonstrate the good properties of triplet constraints and apply it in LogDet divergence-based metric learning model. Then, to deal with high-dimensional data, we apply a compressed representation method to learn…

AutomatedData InterpretationBiometryFeature extractionhigh dimensional datametric learningPattern RecognitionFacial recognition systemSensitivity and SpecificityMatrix decompositionPattern Recognition Automatedcompressed representationComputer-AssistedArtificial Intelligencecompressed representation; high dimensional data; LogDet divergence; metric learning; triplet constraint; Artificial Intelligence; Biometry; Data Interpretation Statistical; Face; Humans; Image Enhancement; Image Interpretation Computer-Assisted; Pattern Recognition Automated; Photography; Reproducibility of Results; Sensitivity and Specificity; Algorithms; Facial Expression; Software; Medicine (all); Computer Graphics and Computer-Aided DesignImage Interpretation Computer-AssistedPhotographyHumansDivergence (statistics)Image retrievalImage InterpretationMathematicsMahalanobis distancebusiness.industryLogDet divergenceMedicine (all)Reproducibility of ResultsPattern recognitionStatisticalImage EnhancementComputer Graphics and Computer-Aided DesignFacial ExpressionComputingMethodologies_PATTERNRECOGNITIONComputer Science::Computer Vision and Pattern RecognitionData Interpretation StatisticalFaceMetric (mathematics)Pattern recognition (psychology)Artificial intelligencetriplet constraintbusinessSoftwareAlgorithmsIEEE transactions on image processing : a publication of the IEEE Signal Processing Society
researchProduct

A gallery of Chua's Attractors - Part IV

2007

Chua oscillator chaos visualization principal component analysis (PCA) Hausdorff distance Mahalanobis distance morphogenesis
researchProduct

Online Density Estimation of Heterogeneous Data Streams in Higher Dimensions

2016

The joint density of a data stream is suitable for performing data mining tasks without having access to the original data. However, the methods proposed so far only target a small to medium number of variables, since their estimates rely on representing all the interdependencies between the variables of the data. High-dimensional data streams, which are becoming more and more frequent due to increasing numbers of interconnected devices, are, therefore, pushing these methods to their limits. To mitigate these limitations, we present an approach that projects the original data stream into a vector space and uses a set of representatives to provide an estimate. Due to the structure of the est…

Data streamMahalanobis distanceComputer scienceData stream miningbusiness.industry02 engineering and technologyDensity estimationcomputer.software_genreSet (abstract data type)Software020204 information systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingData miningbusinesscomputerCurse of dimensionalityVector space
researchProduct

Data Mining Algorithms for Knowledge Extraction

2020

In this paper, we study the methods, techniques, and algorithms used in data mining, and from the studied algorithms, we emphasized the clustering algorithms, more precisely on the K-means algorithm. This algorithm was first studied using the Euclidean distance, then modifying the distance between the clusters using the distances Mahalanobis and Canberra. After implementing the algorithms in C/C++, we compared the clustering of the three algorithms, after which we modified them and studied the distance between the clusters.

Euclidean distanceMahalanobis distanceMatrix (mathematics)ComputingMethodologies_PATTERNRECOGNITIONKnowledge extractionComputer sciencebusiness.industryValue (computer science)Pattern recognitionArtificial intelligenceCluster analysisbusinessData mining algorithm
researchProduct

PRINCIPAL POLYNOMIAL ANALYSIS

2014

© 2014 World Scientific Publishing Company. This paper presents a new framework for manifold learning based on a sequence of principal polynomials that capture the possibly nonlinear nature of the data. The proposed Principal Polynomial Analysis (PPA) generalizes PCA by modeling the directions of maximal variance by means of curves instead of straight lines. Contrarily to previous approaches PPA reduces to performing simple univariate regressions which makes it computationally feasible and robust. Moreover PPA shows a number of interesting analytical properties. First PPA is a volume preserving map which in turn guarantees the existence of the inverse. Second such an inverse can be obtained…

FOS: Computer and information sciencesPolynomialComputer Networks and CommunicationsComputer scienceMachine Learning (stat.ML)02 engineering and technologyReduction (complexity)03 medical and health sciencessymbols.namesake0302 clinical medicineStatistics - Machine LearningArtificial Intelligence0202 electrical engineering electronic engineering information engineeringPrincipal Polynomial AnalysisPrincipal Component AnalysisMahalanobis distanceModels StatisticalCodingDimensionality reductionNonlinear dimensionality reductionGeneral MedicineClassificationDimensionality reductionManifold learningNonlinear DynamicsMetric (mathematics)Jacobian matrix and determinantsymbolsRegression Analysis020201 artificial intelligence & image processingNeural Networks ComputerAlgorithmAlgorithms030217 neurology & neurosurgeryCurse of dimensionalityInternational Journal of Neural Systems
researchProduct

Multimedia Retrieval by Means of Merge of Results from Textual and Content Based Retrieval Subsystems

2010

The main goal of this paper it is to present our experiments in ImageCLEF 2009 Campaign (photo retrieval task). In 2008 we proved empirically that the Text-based Image Retrieval (TBIR) methods defeats the Content-based Image Retrieval CBIR "quality" of results, so this time we developed several experiments in which the CBIR helps the TBIR. The TBIR System [6] main improvement is the named-entity sub-module. In case of the CBIR system [3] the number of low-level features has been increased from the 68 component used at ImageCLEF 2008 up to 114 components, and only the Mahalanobis distance has been used. We propose an ad-hoc management of the topics delivered, and the generation of XML struct…

InformáticaMahalanobis distanceTelecomunicacionesInformation retrievalcomputer.internet_protocolComputer scienceSearch engine indexing02 engineering and technologyContent-based image retrieval01 natural sciencesData retrievalHuman–computer information retrieval0103 physical sciences0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingVisual Word010306 general physicsImage retrievalcomputerXML
researchProduct

Hyperspectral detection of citrus damage with Mahalanobis kernel classifier

2007

Presented is a full computer vision system for the identification of post-harvest damage in citrus packing houses. The method is based on the combined use of hyperspectral images and the Mahalanobis kernel classifier. More accurate and reliable results compared to other methods are obtained in several scenarios and acquired images.

Mahalanobis distanceContextual image classificationbusiness.industryComputer scienceHyperspectral imagingPattern recognitionObject detectionSupport vector machineKernel (linear algebra)Kernel methodKernel (image processing)Computer visionArtificial intelligenceElectrical and Electronic EngineeringbusinessClassifier (UML)
researchProduct

Clustering-Based Protocol Classification via Dimensionality Reduction

2015

We propose a unique framework that is based upon diffusion processes and other methodologies for finding meaningful geometric descriptions in high-dimensional datasets. We will show that the eigenfunctions of the generated underlying Markov matrices can be used to construct diffusion processes that generate efficient representations of complex geometric structures for high-dimensional data analysis. This is done by non-linear transformations that identify geometric patterns in these huge datasets that find the connections among them while projecting them onto low dimensional spaces. Our methods automatically classify and recognize network protocols. The main core of the proposed methodology…

Mahalanobis distanceMarkov chainbusiness.industryComputer scienceDimensionality reductionParameterized complexityPattern recognitionArtificial intelligenceConstruct (python library)businessFlow networkCluster analysisCommunications protocol
researchProduct

Accelerated Proximal Gradient Descent in Metric Learning for Kernel Regression

2018

The purpose of this paper is to learn a specific distance function for the Nadayara Watson estimator to be applied as a non-linear classifier. The idea of transforming the predictor variables and learning a kernel function based on Mahalanobis pseudo distance througth an low rank structure in the distance function will help us to lead the development of this problem. In context of metric learning for kernel regression, we introduce an Accelerated Proximal Gradient to solve the non-convex optimization problem with better convergence rate than gradient descent. An extensive experiment and the corresponding discussion tries to show that our strategie its a competitive solution in relation to p…

Mahalanobis distanceOptimization problembusiness.industryComputer scienceEstimator02 engineering and technology010501 environmental sciences01 natural sciencesRate of convergenceMetric (mathematics)0202 electrical engineering electronic engineering information engineeringKernel regression020201 artificial intelligence & image processingArtificial intelligencebusinessGradient descentAlgorithmClassifier (UML)0105 earth and related environmental sciences
researchProduct

Use of QSAR methods for predicting the chemiluminescent behaviour of organic compounds upon reaction with potassium permanganate in an acid medium

2009

In previous work, molecular connectivity computations were successfully used to predict the chemiluminescent behaviour of organic compounds upon reaction with common strong oxidants and the native fluorescence too; both of them in a liquid phase. The obtained results were used to develop new analytical procedures to the given compounds. For the first time, connectivity methods were used for a purely analytical purpose. In this work, we went deeper into the knowledge of direct chemiluminescence processes by using molecular connectivity in the form of QSAR methods to predict the chemiluminescence intensity produced by reactions between organic compounds (pharmaceuticals mainly) and potassium …

Mahalanobis distanceQuantitative structure–activity relationshipWork (thermodynamics)LuminescenceAnalytical chemistryFluorescence spectrometryQuantitative Structure-Activity RelationshipReproducibility of ResultsHydrogen-Ion ConcentrationLinear discriminant analysisAnalytical Chemistrylaw.inventionPotassium permanganatechemistry.chemical_compoundPharmaceutical PreparationsPotassium PermanganatechemistrylawComputational chemistryAnalytical proceduresOrganic ChemicalsOxidation-ReductionChemiluminescenceTalanta
researchProduct